
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
August 29, 2000

SPI Implementation Using Serial Mode 0 on EZ-USB

Introduction
This document demonstrates how to implement SPI (Serial
Peripheral Interface) using one of the EZ-USB UARTS in se-
rial mode 0. This demonstration uses the EZ-USB as the
master, and transfers data to and from a 25LC320 EEPROM.
The sample program demonstrates how to setup the UART. It
includes a function to read an SPI byte, a function to write an
SPI byte, and functions to read and write data to a 25LC320
EEPROM.

Background
UART Serial mode 0 provides synchronous, half-duplex serial
communication. Serial data output appears on the RXD0OUT
pin; serial data is received on the RXD0 pin; and the TXD0
pin provides the shift clock for both transmit and receive.

The serial mode 0 baud rate is either CLK24/12 or CLK24/4,
depending on the state of the SM2_0 bit. When SM2_0 = 0,
the baud rate is CLK24/12; when SM2_0 = 1, the baud rate is
CLK24/4.

Data transmission begins when an instruction writes to the
SBUF0 SFR. The UART shifts the data, LSB first, at the se-
lected baud rate until the 8-bit value has been shifted out.
TI_0 is set after the last bit is shifted out.

Data reception begins when the REN_0 bit is set and the RI_0
bit is cleared in the SCON_0 SFR. The shift clock is activated
and the UART shifts data in on each rising edge of the shift
clock until 8 bits have been received. After the last bit is shift-
ed in, the RI_0 bit is set and reception stops until the software
clears the RI_0 bit.

Initialization
The SCON_0 register initialization needs to address the fol-
lowing items:

• Serial Mode 0—Set SM0_0 = SM1_0 = 0.

• Baud Rate—In this case we are using CLK24/12 because
the 25LC320 can not exceed 3 MHz clock rate, so SM2_0
= 0.

• Receive Enable—Set REN_0 = 1 in order to receive data.

• Interrupt Flags—Set TI_0 = RI_0 = 1 so that these flags
are zero only when transmitting or receiving. A quick check
of their state can determine if the UART is busy. Also, if
using interrupts you can software trigger the first interrupt
and transmit or receive your first byte.

The final initialization is to turn on the alternate pin functions
associated with the serial port. In this example, we are using
Serial Port 0. Set the following registers:

• PORTACFG = 0x40.

• PORTCCFG = 0x03.

Program
Data is transmitted one byte at a time by calling the spiwrite-
byte function. Transmitting a byte consists of:

• Clearing the TI_0 flag.

• Writing the byte to the SBUF_0 register.

• Waiting until the TI_0 flag is set indicating that the last bit
has been shifted out.

This function also uses a look-up table, swap, which reverses
the bit order. This is done because the UART transmits LSB
first, but the 25LC320 is expecting MSB first.

Data is received one byte at a time by calling the spireadbyte
function. Receiving a byte consists of:

• Clearing the RI_0 flag.

• Waiting until the RI_0 flag is set indicating that the last bit
has been shifted in.

• Reading the SBUF_0 register.

This function also uses the swap look-up table to reverse the
bit order.

Table 1. SCON_0 Register Init Values

SM0_0 SM1_0 SM2_0 REN_0 N/A N/A TI_0 RI_0

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 1 0 0 1 1

Mode 0 SPI

2

C Program Listing
1 /***
2
3 spi2.c 4-24-00 ott
4 Used to test uart mode 0 spi functionality on EZ-USB
5 This program will do a constant write and readback loop to an
6 25C320 spi EEPROM with EZ-USB as the master
7 Pins used:C0 - RxD0 (Data In)
8 C1 - TxD0 (Clk)
9 C2 - Chip select
10 A6 - RxD0OUT (Data Out)
11
12 ***/
13
14 #include <ezusb.h>
15 #include <ezregs.h>
16
17 #define CSHIGH 0x04
18 #define CSLOW 0xFB
19 #define READ_CMD 3
20 #define WRITE_CMD 2
21 #define WRITE_ENABLE 6
22 #define WRITE_DISABLE 4
23 #define READ_STATUS 5
24 #define WRITE_STATUS 1
25
26 /////////////////////////////////////// Look up table
27 code BYTE swap[] = {0,128,64,192,32,160,96,224,16,144,80,208,48,176,112,240,8,136,
28 72,200,40,168,104,232,24,152,88,216,56,184,120,248,4,132,68,196,36,164,100,
29 228,20,148,84,212,52,180,116,244,12,140,76,204,44,172,108,236,28,156,92,220,
30 60,188,124,252,2,130,66,194,34,162,98,226,18,146,82,210,50,178,114,242,10,
31 138,74,202,42,170,106,234,26,154,90,218,58,186,122,250,6,134,70,198,38,166,
32 102,230,22,150,86,214,54,182,118,246,14,142,78,206,46,174,110,238,30,158,94,
33 222,62,190,126,254,1,129,65,193,33,161,97,225,17,145,81,209,49,177,113,241,9,
34 137,73,201,41,169,105,233,25,153,89,217,57,185,121,249,5,133,69,197,37,165,
35 101,229,21,149,85,213,53,181,117,245,13,141,77,205,45,173,109,237,29,157,93,
36 221,61,189,125,253,3,131,67,195,35,163,99,227,19,147,83,211,51,179,115,243,11,
37 139,75,203,43,171,107,235,27,155,91,219,59,187,123,251,7,135,71,199,39,167,
38 103,231,23,151,87,215,55,183,119,247,15,143,79,207,47,175,111,239,31,159,95,
39 223,63,191,127,255};
40
41 /////////////////////////////////////// Prototypes
42 void write_25LC320 (int a, BYTE d);
43 BYTE read_25LC320 (int a);
44 void enable_25LC320 (void);
45 BYTE status_25LC320 (void);
46 void spiwritebyte (BYTE d);
47 BYTE spireadbyte (void);
48
49 main()
50 {
51 BYTE d;
52 int a;
53 BYTE t,x;
54
55 PORTCCFG = 0x03; //Turn on uart pins rxd0, txd0
56 PORTACFG = 0x40; //Turn on uart pin rxd0out
57 OUTC |= CSHIGH; //Turn cs high
58 OEC = 0x04; //Make CS# output
59 SCON0 = 0x13; //Mode 0, baud 24/12, enable receive
60 CKCON &= 0xF8; //Set stretch 0
61 while(TRUE)
62 {
63 enable_25LC320(); //Enable write

Mode 0 SPI

3

64 write_25LC320 (a,d); //Write byte
65 while (status_25LC320() & 1); //Wait until done
66 t = read_25LC320 (a); //Try to read back
67 if (t != d)
68 x=0; //Test for read back, set breakpoint here
69 a++;
70 d++;
71 }
72 }
73 void write_25LC320 (int a, BYTE d)
74 {
75 OUTC &= CSLOW; //Turn cs low
76 spiwritebyte (WRITE_CMD);
77 spiwritebyte (a >> 8);
78 spiwritebyte (a);
79 spiwritebyte (d);
80 OUTC |= CSHIGH; //Turn cs high
81 }
82
83 BYTE read_25LC320 (int a)
84 {
85 BYTE d;
86
87 OUTC &= CSLOW; //Turn cs low
88 spiwritebyte (READ_CMD);
89 spiwritebyte (a >> 8);
90 spiwritebyte (a);
91 d = spireadbyte();
92 OUTC |= CSHIGH; //Turn cs high
93 return (d);
94 }
95
96 void enable_25LC320 (void)
97 {
98 OUTC &= CSLOW; //Turn cs low
99 spiwritebyte (WRITE_ENABLE);
100 OUTC |= CSHIGH; //Turn cs high
101 }
102
103 BYTE status_25LC320 (void)
104 {
105 BYTE d;
106
107 OUTC &= CSLOW; //Turn cs low
108 spiwritebyte (READ_STATUS);
109 d = spireadbyte();
110 OUTC |= CSHIGH; //Turn cs high
111 return (d);
112 }
113
114 void spiwritebyte (BYTE d)
115 {
116 TI = FALSE; //Clear flag
117 SBUF0 = swap[d]; //Write byte
118 while (!TI); //Wait until done transmitting
119 }
120
121 BYTE spireadbyte (void)
122 {
123 RI = FALSE; //Clear flag
124 while (!RI); //Wait until done receiving
125 return (swap[SBUF0]); //Return byte
126 }

Mode 0 SPI

4

Performance
This example uses the slower baud rate of CLK24/12, or
2 Mbits/s. This is at the limit of the 25LC320. At this rate, the
write_25LC320 function, which writes four consecutive bytes
(command, address HIGH, address LOW, and data byte),
takes approximately 37 µs to complete. This equates to a
throughput greater than 840 kbits/s. Similar performance is
seen with the read_25LC320 function.

Numerous variations and optimizations can be made, de-
pending on the application. For instance, multiple byte func-
tions can be written to reduce some overhead. Also, interrupts
can be used to keep the data flowing for large multiple byte
read and writes.

Figure 1. Typical Byte Write Sequence

Figure 2. Entire write_25LC320 Sequence

Mode 0 SPI

© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Figure 3. Entire read_25LC320 Sequence

Conclusion
This document demonstrates an easy way to implement SPI
communications using the EZ-USB Serial Ports in mode 0. A
minimum of code is required. Very respectable performance
can be achieved as demonstrated with a 25LC320 EEPROM.
Application specific modifications and optimizations can be
made to communicate with other SPI peripherals and to in-
crease performance.

